# Base Case Modeling Changes, Modifications, and Improvements

Prepared by:
Neil Wheeler
Sonoma Technology, Inc.
Petaluma, CA

Presented to:
Utah PM<sub>10</sub> SIP Modeling Workgroup
at Salt Lake City, Utah

June 13, 2001



#### **Prior Simulations**

- Base 7 MM5 Winds
  - Horizontal Advection is the principal loss mechanism in "problem" areas
- Base 17a Hybrid Wind Field
  - Objective analysis of selected sites in Mix
     Layer
  - MM5 Winds above Mix Layer



#### **Base 17a Results**





### **Base 32S1**

- Hybrid DWM-MM5 Winds
  - SODAR data
  - Terrain Blocking
  - Vertical Velocity Minimization at Diffusion Break
- ABLM Mixing Model for Diffusion Break
- Meteorological Variables Re-Mapped Vertically
- UAM-AERO Modifications
  - Neutral Stability at Night in Urban Areas
  - SO<sub>2</sub> -> H<sub>2</sub>SO<sub>4</sub> rates modified in Empirical Fog Model



#### **General Results**

- Peak Concentrations Mostly Contained in the Salt Lake Valley
- Predicted Peaks Still Remain to the South and East of Observed
- Some Diffusion of PM Mass into the Wasatch Front
- Higher Diffusion Break Height at Night in Urban
   Areas Resulting in Lower Nighttime PM10



## **Model Performance Evaluation**

Presented to:
Utah PM<sub>10</sub> SIP Modeling Workgroup
at Salt Lake City, Utah

June 13, 2001



# **Approach**

- Performance Criteria for UAM-AERO
  - Use in an Absolute Attainment Demonstration
  - Use in a Relative Attainment Demonstration
- Statistics Speciated Particulate Matter
  - Normalized Mean Bias
  - Normalized Mean Error
  - Peak Prediction Accuracy
- Graphical Analysis
- Sensitivity Tests
- Data Type and Quantity
- Common Sense

Sonoma Technology, Inc.

## **Definitions**

- Normalized Mean Bias
- Normalized Mean Error
- Peak Prediction Accuracy



# Criteria for Absolute Attainment Demonstration

- Normalized Mean Bias: +/- 15%
- Normalized Mean Error: 35%
- Unpaired Peak Prediction Accuracy: 20%
- Graphical: Modeled and observed species for the episode chemically, spatially, and temporally consistent.
- Sensitivity: Responses for important secondary species consistent with understanding of the processes leading to their formation.
- Data: Type and quantity sufficient to perform statistical and graphical tests for all species indicated.



# Criteria for Relative Attainment Demonstration

- Normalized Mean Bias: +/- 50%
- Normalized Mean Error: 50%
- Mass and Chemical Components
- Somewhat Arbitrary



# **Base 32S1 Normalized Mean Bias (%)**

| Date   | Area | PM10 | OTR | NO3 | SO4 | NH4 | ос  | EC  | CL  | NA   |
|--------|------|------|-----|-----|-----|-----|-----|-----|-----|------|
| Feb 14 | SLC  | -35  | -25 | -47 | -65 | -46 | -47 | +22 | -71 | -55  |
|        | UC   | -17  | -14 | -18 | -71 | -7  | -43 | +19 | +30 | +166 |
|        | ALL  | -17  | -13 | -24 | -70 | -18 | -33 | +17 | -5  | +84  |
| Feb 15 | SLC  | -40  | -24 | -47 | -55 | -46 | -42 | +54 | -62 | -30  |
|        | UC   | -33  |     |     |     |     |     |     |     |      |
|        | ALL  | -23  | +55 | -44 | -54 | -41 | -19 | +16 | +30 | +9   |



# **Base 32S1 Normalized Mean Error (%)**

| Date   | Area | PM10 | OTR | NO3 | SO4 | NH4 | ос | EC | CL  | NA  |
|--------|------|------|-----|-----|-----|-----|----|----|-----|-----|
| Feb 14 | SLC  | 35   | 25  | 47  | 65  | 46  | 47 | 22 | 71  | 55  |
|        | UC   | 37   | 56  | 18  | 71  | 11  | 43 | 35 | 74  | 187 |
|        | ALL  | 29   | 39  | 24  | 70  | 20  | 38 | 26 | 67  | 128 |
| Feb 15 | SLC  | 40   | 24  | 47  | 55  | 46  | 42 | 67 | 62  | 31  |
|        | UC   | 33   |     |     |     |     |    |    |     |     |
|        | ALL  | 28   | 76  | 44  | 54  | 41  | 38 | 47 | 127 | 37  |



## **Other Evaluations**

- Time Series
- Spatial Plots
- Animations
- Scatter Plots
- Speciation



# **Hourly Time Series**



### **Relative Reduction Factors**

Prepared by:
Neil Wheeler
Sonoma Technology, Inc.
Petaluma, CA

Presented to:
Utah PM<sub>10</sub> SIP Modeling Workgroup
at Salt Lake City, Utah

June 13, 2001



#### **Relative Reduction Factors**

- Absolute Reduction Factors
- What is a Relative Reductions Factor?
- When Should They be Used?



#### Rationale

- Acknowledges Uncertainty in Predictions
- Anchors Model Estimates to Observations
- Retains Elements Predictive Chemistry and Physics unlike Speciated Rollback or



### **Calculation**

- Base Case Concentration (C<sub>b</sub>)
- Control Scenario Concentration (C<sub>c</sub>)
  - Future Year with Growth and Controls Already "on the books"
  - Future Year Control Scenarios
- Relative Reduction Factor (RRF)

$$RRF = C_c / C_b$$



# **Application**

- Site Specific Design Values
- Component Specific Design Values
- Calculate Site Specific RRFs
- Apply RRFs to Component Specific Design Values, Site-by-Site
- Compare to Standard



# Example 1 of 3

- Design Value
  - 160 ug/m<sup>3</sup> PM10
  - 40 ug/m<sup>3</sup> NO3
  - 40 ug/m³ OC
  - $-80 \text{ ug/m}^3 \text{ OTR}$
- Base Case
  - 120 ug/m<sup>3</sup> PM10
  - 30 ug/m<sup>3</sup> NO3
  - 20 ug/m³ OC
  - 70 ug/m<sup>3</sup> OTR



# Example 2 of 3

#### Control

- 105 ug/m<sup>3</sup> PM10
- 15 ug/m<sup>3</sup> NO3
- 15 ug/m<sup>3</sup> OC
- 75 ug/m<sup>3</sup> OTR
- Calculate RRFs by Component

$$- RRF_{NO3} = 15/30 = 0.50$$

$$- RRF_{OC} = 15/20 = 0.75$$

$$- RRF_{OTR} = 75/70 = 1.07$$

## Example 3 of 3

Apply to Design Value

NO3: 0.50 \* 40 = 20

OC: 0.75 \* 40 = 30

OTR: 1.07 \* 80 = 86

SUM: 20 + 30 + 86 = 136

Compare to Standard

